
ICCAD 2020: International Conference on Connected Automated Driving

Lane-change Path Planning of Autonomous Driving using Model-based Optimization,
Deep Reinforcement Learning and 5G Vehicle-to-vehicle (V2V) Communications

William Li,
Delbarton School, Morristown, NJ 07960, USA

E-mail: li_w@delbarton.org

Abstract—Lane-change path planning is a crucial and yet com-
plex task in autonomous driving. The traditional path planning
approach based on a system of carefully-crafted rules to cover
various driving scenarios becomes unwieldy as more and more
rules are added to deal with exceptions and corner cases. This
paper proposes to divide the entire path planning to two stages.
In the first stage the ego vehicle travels longitudinally in the
source lane to reach a safe state. In the second stage the ego
vehicle makes lateral lane-change maneuver to the target lane.
The paper derives the safe state conditions based on lateral
lane-change maneuver calculation to ensure collision free in
the second stage. To determine the acceleration sequence that
minimizes the time to reach a safe state in the first stage,
the paper proposes three schemes, namely, kinetic model based
optimization, deep reinforcement learning, and 5G vehicle-to-
vehicle (V2V) communications. The paper investigates these
schemes via simulation. The model-based optimization is sensitive
to the model assumptions. The deep reinforcement learning is
more flexible in handling scenarios beyond the model assumed
by the optimization. The 5G V2V eliminates uncertainty in
predicting future behaviors of surrounding vehicles by sharing
driving intents and enabling cooperative driving.

Index Terms—Lane change, path planning, autonomous driv-
ing, deep reinforcement learning, 5G, V2V communications,
connected vehicles.

I. INTRODUCTION

Autonomous driving requires a great level of intelligence,
which can roughly be divided into three categories [1]: recog-
nition that identifies components of the surrounding environ-
ment, prediction that predicts the future states of the environ-
ment, and planning that incorporates recognition and predic-
tion to plan the future sequence of driving actions. Planning
is the hardest task of the three, because it requires decision
making in complex driving environments. One of planning
tasks is lane-change. Lane-change is a highly demanding task
because the autonomous vehicle needs to watch the leading
vehicle on its source lane and surrounding vehicles on the
target lane and to optimize its maneuver to safely arrive at
its destination. According to one study [2], around 10% of all
freeway crashes are caused by lane-change. Therefore, well-
designed automated lane-change can significantly enhance the
driving safety.

Lane-change involves both path planning that plans the
trajectory of the ego vehicle and drive-by-wire control that uses
electrical or electro-mechanical systems to move the vehicle

following the planned trajectory. This paper focuses on the
path planning part of lane-change.

The traditional path planning approach is based on a system
of carefully-crafted rules to cover various driving scenarios [3].
A major drawback is that the system may become unwieldy
as more and more rules are added to deal with exceptions and
corner cases. While individual rules may be easy to interpret,
the complex interactions of many rules is usually difficult
to grasp. Recently a number of neural networks have been
presented in the literature for lane-change path planning [4]–
[7], where the goal is to obtain a safe and smooth driving
policy through deep reinforcement learning. These algorithms
are studied via simulation to numerically demonstrate that they
can effectively achieve the goal. However, the performance of
the algorithms has not been benchmarked. For example, it is
unclear whether the planned path is optimal and efficient.

A novelty of this paper is that the paper first derives an op-
timal lane-change path planning algorithm based on a kinetic
speed control model, and then compares its performance with
that using deep reinforcement learning. The results show that
the deep reinforcement learning scheme can outperform the
model-based optimization scheme when the travel pattern is
beyond the model assumed by the latter. Thus, deep learning is
more flexible in handling different scenarios and more robust
overall with sufficient learning.

In the above model-based optimization and deep learning
schemes, a vehicle makes its own path planning decision
without explicitly exchanging information with other vehicles.
A key challenge is thus the prediction of future motions of
surrounding vehicles. 5G vehicle-to-vehicle (V2V) communi-
cations enables vehicles to talk to each other with very low
latency and high reliability.

Another novelty of this paper is that the paper studies the
performance improvement resulted from the support of 5G
V2V. In particular, 5G V2V allows a vehicle to be informed
of the future path trajectories of surrounding vehicles and to
optimize its path planning accordingly (passive cooperation).
Furthermore, the vehicle can inform surrounding vehicles of
its intent of lane-change and request them to adjust their own
path trajectories to facilitate lane-change of the vehicle (active
cooperation).

The remainder of the paper is organized as follows. Sec-
tion II describes the system model assumption in this paper.

ICCAD 2020: International Conference on Connected Automated Driving

Fig. 1: Illustration of the vehicle and road model.

Section III proposes the two-stage path planning, defines the
notion of safe state and derives its condition. Section IV pro-
poses a model-based optimization algorithm where the model
assumes surrounding vehicles travel at zero acceleration. The
motions of surrounding vehicles are however more sophisti-
cated in the real world. To address this challenge, Section V
proposes a deep reinforcement learning scheme to learn from
the vehicle motion data simulated with the famous Intelligent
Driver Model (IDM). Section VI introduces 5G V2V and
proposes the ideas of passive and active cooperation for lane-
change path planning. Section VII presents the simulation
results of the performance of the three proposed schemes.
Finally, Section VIII concludes this paper and proposes a few
areas for future research.

II. SYSTEM MODEL

A. Vehicle and Road Model

Figure 1 illustrates the vehicle and road model. A vehicle is
modeled as a 2D rectangle with dimension Lx×Ly , where Lx
represents the length and Ly the width. The state of the vehicle
at time t is defined by (x(t), y(t), s(t), θ(t), ω(t)), where
x(t), y(t) are the positions of the center of the rectangle along
the longitudinal and lateral axes, respectively, s(t) is the speed,
θ(t), ω(t) are the yaw rotation and yaw rate, respectively.

ẋ = s cos θ, ẏ = s sin θ, θ̇ = ω. (1)

Denote a(t), α(t) the linear and angular accelerations respec-
tively.

ṡ = a, ω̇ = α. (2)

Given the initial condition, the trajectory of the vehicle is
fully controlled by the accelerations a(t), α(t) determined by
path planning. For safe driving, assume the maximum and
minimum speeds smin ≤ s(t) ≤ smax. |a(t)| ≤ amax where
amax is a parameter depending on the comfortable level for a
human.

Vehicles are randomly dropped on a straight multi-lane road
with lane width LL where two vehicles in the same lane are
separated by a safe distance defined in Section II-B. They all
travel in the positive x-axis direction. The ego vehicle starts
from the rightmost lane and intends to move to the middle
lane. The goal of path planning is to complete lane-change in
the shortest time without collision.

B. Kinetic Model of Longitudinal Travel

Consider longitudinal travel without lane-change. Thus,
θ, ω, α are all equal to 0. Denote se(t2), sl(t2) the initial

Fig. 2: Illustration of the safe distance in the worst case
scenario when se(t2) > sl(t2). (a) Calculation of speeds and
distance. (b) Safe distance region of s2

e(t2) versus de,l(t2)
given s2

l (t2) as specified by (4).

speeds at some time t2 of the ego vehicle and the leading
vehicle that is just ahead of the ego vehicle in the same lane
and de,l(t2) > 0 the initial distance between the two. Denote
ae(t), al(t) the accelerations for t ≥ t2. de,l(t2) is a safe
distance if the ego vehicle can employ appropriate ae(t) to
avoid hitting the leading vehicle for any al(t). Collision occurs
if |de,l(t)| < Lx at any t ≥ t2.

If se(t2) ≤ sl(t2), then the safe distance satisfies de,l(t2) ≥
Lx. The ego vehicle can set ae(t) = al(t) for t ≥ t2, which
results in se(t) ≤ sl(t) and therefore de,l(t) ≥ de,l(t2) ≥ Lx.

If se(t2) > sl(t2), then the worst case scenario1 for
potential collision is when al(t) = −amax until sl(t) = 0

at t = t3, where t3 − t2 = sl(t2)
amax

, and al(t) = 0 thereafter. To
avoid collision, the ego vehicle can set ae(t) = −amax until
se(t) = 0 at t = t4, where t4 − t2 = se(t2)

amax
, and ae(t) = 0

thereafter.
Figure 2(a) shows the safe distance calculation. For t ∈

[t2, t3], se(t), sl(t) both decrease at the rate of −amax, and
de,l(t) = de,l(t2)− (se(t2)− sl(t2))(t− t2). Thus,

de,l(t3) = de,l(t2)− (se(t2)− sl(t2))sl(t2)

amax
. (3)

For t ∈ [t3, t4], se(t) further decreases at the rate of −amax

while sl(t) = 0, and de,l(t) = de,l(t3)− (se(t2)− sl(t2))(t−
t3) + 1

2amax(t− t3)2. Thus,

de,l(t4) = de,l(t3)− (se(t2)− sl(t2))
se(t2)− sl(t2)

amax

+
1

2
amax

(
se(t2)− sl(t2)

amax

)2

= de,l(t2)− s2
e(t2)− s2

l (t2)

2amax
.

Hence, the safe distance is given by

de,l(t2) ≥ max

(
0,
s2
e(t2)− s2

l (t2)

2amax

)
+ Lx. (4)

Figure 2(b) shows the safe distance region derived from (4).

1For safety, assume here that collision must be avoided even if the leading
vehicle violates the speed limits. That is, sl(t) can be as low as 0, which is
below smin. In an emergency scenario, the leading vehicle stops completely
rather than travels at the minimum smin.

ICCAD 2020: International Conference on Connected Automated Driving

Fig. 3: Illustration of the feasible region of pe, se, shown as
the green areas in (b), in the presence of vehicles 1, 2 in the
target lane shown in (a). The feasible region is a function of
p1, s1, p2, s2 as well as parameters Lx, smax, smin. The slope
of the slanting lines is −2amax.

For the purpose of lane-change path planning, suppose that
vehicles i are already in the target lane with positions pi and
speeds si, where i = 1, 2, The ego vehicle has to find a
position pe and speed se with which it can insert itself to the
target lane so that it keeps a safe distance with any vehicle
i. Figure 3 illustrates the feasible region of pe, se derived
from (4). Note that keeping a safe distance with any existing
vehicle after the ego vehicle has merged to the target lane is
just one condition for collision-free lane-change. Section III
will discuss other conditions using the kinetic model of lane-
change maneuver presented next.

C. Kinetic Model of Lane-change Maneuver

To make a lane-change maneuver, the ego vehicle applies
nonzero angular acceleration α. Denote τ the duration of the
maneuver, which starts at some t1. For simplicity, assume
no linear acceleration (i.e., a = 0) during the maneuver and
the following piecewise constant angular acceleration control
function

α(t) =


α0, t ∈ [t1, t1 + τ

4).

−α0, t ∈ [t1 + τ
4 , t1 + 3τ

4).

α0, t ∈ [t1 + 3τ
4 , t1 + τ).

(5)

α0 is a parameter to be determined later in this section. θ, ω
can be determined by integration of (1) and (2).

ω(t) =


α0(t− t1), t ∈ [t1, t1 + τ

4).

α0
τ
4 − α0(t− t1 − τ

4), t ∈ [t1 + τ
4 , t1 + 3τ

4).

−α0
τ
4 + α0(t− t1 − 3τ

4), t ∈ [t1 + 3τ
4 , t1 + τ).

(6)

θ(t) =


1
2α0(t− t1)2,
1
2α0(τ4)2 + α0

τ
4 (t− t1 − τ

4)− 1
2α0(t− t1 − τ

4)2,
1
2α0(τ4)2 − α0

τ
4 (t− t1 − 3τ

4) + 1
2α0(t− t1 − 3τ

4)2.

(7)
Figure 4 plots α(t), ω(t), θ(t), and shows that θ(t) is a

smooth function of t and ω, θ both return to 0 at the end
of the lane-change maneuver t1 + τ .

Fig. 4: Plots of α(t), ω(t), θ(t) with α0 = 1, τ = 6.

(a) (b)

Fig. 5: Performance study of Lane-change Maneuver. (a)
Relative error in the total lateral displacement |∆y −LL|/LL
as a function of τ when the closed-form expression (10) is
used as an approximation of α0. (b) Relative reduction in
the average longitudinal velocity from the speed 1 − v̄x

s as
a function of τ . In the figure, LL = 3 m.

From (7), one can calculate the lateral velocity ẏ. The total
lateral displacement during the maneuver can be calculated by
integrating (1),

∆y =

∫ t1+τ

t1

ẏ(t) dt =

∫ t1+τ

t1

s sin θ(t) dt, (8)

where s is a constant linear speed during the maneuver. Given
τ , α0 can be determined from ∆y = LL. When θ(t) � 1,
sin θ(t) ≈ θ(t), and one can obtain a closed-form expression
of α0 as follows.

sα0

(∫ τ
4

0

1

2
t2 dt+

∫ τ
2

0

1

2

(
τ

4

)2

+
τ

4
t− 1

2
t2 dt

+

∫ τ
4

0

1

2

(
τ

4

)2

− τ

4
t+

1

2
t2 dt

)
≈ LL. (9)

The expression in the parenthesis can be simplified to τ3

32 .
Therefore,

α0 ≈
32LL
sτ3

. (10)

To assess the accuracy of the above approximation, define
the relative error in the total lateral displacement as |∆y −
LL|/LL, where ∆y is given in (8) and α0 is determined from
the closed-form expression (10). Figure 5(a) plots the relative

ICCAD 2020: International Conference on Connected Automated Driving

Fig. 6: Illustration of two-stage path planning of lane-change.

error versus τ . The relative error is below 1% unless τ is very
small.

During the lane-change maneuver, the longitudinal velocity
given in (1), ẋ, is strictly smaller than speed s. The average
longitudinal velocity can be calculated by dividing the total
longitudinal displacement over the maneuver duration,

v̄x =
∆x

τ
=

∫ t1+τ

t1
ẋ(t) dt

τ
=

∫ t1+τ

t1
s cos θ(t) dt

τ
< s. (11)

The loss of the average longitudinal velocity from the speed
can be measured by the relative reduction 1− v̄x

s . Figure 5(b)
plots the relative reduction versus τ . The relative reduction is
below 2% unless τ is very small. Therefore, in the following,
to simplify the calculation, the paper ignores the difference
and assumes the longitudinal velocity is equal to the speed
during the lane-change maneuver.

III. TWO-STAGE PATH PLANNING OF LANE-CHANGE

The entire path planning of lane-change is a sequence of
complex operations. To address the complexity issues, this
study proposes a two-stage approach illustrated in Figure 6.
In the first stage, the ego vehicle travels longitudinally in the
source lane with α = 0 as in Section II-B. The goal is to
reach a safe state from which the ego vehicle can proceed to
the second stage. If the ego vehicle is already in a safe state,
then the first stage is skipped. In the second stage, from a
safe state the ego vehicle makes a lane-change maneuver to
the target lane with a = 0 as in Section II-C. Denote T, τ the
durations of the two stages, respectively. [t0, t1), [t1, t2) are
the respective time intervals of the first and seconds stages,
where t1 = t0 + T, t2 = t1 + τ .

A. Definition of Safe State

A safe state is defined to be a state from which the second
stage lane-change maneuver is guaranteed to be collision-free.
Using the piecewise constant angular acceleration scheme (5),
the lateral movement is symmetric as evident in Figure 4.
Assume LL = 2Ly , for otherwise the vehicle could keep
on traveling in the middle of two lanes. In the first half of
the maneuver duration, the vehicle moves in the source lane
towards the middle point of the source and target lanes where
θ reaches the maximum. In the second half the vehicle moves
in the target lane while driving θ back to 0. The following
three conditions in the second stage have to be met to be a
safe state,

1) In [t1, t1 + τ
2), the ego vehicle should not hit the leading

vehicle.

2) In [t1 + τ
2 , t1 + τ), the ego vehicle should not hit any

adjacent vehicle.
3) At t1 + τ , the ego vehicle should keep a safe distance

from any adjacent vehicle.
Here an adjacent vehicle is any vehicle in the target lane.
The union of the leading and adjacent vehicles are referred to
as the surrounding vehicles. These three conditions are more
precisely specified next.

B. Conditions of Safe State

Recall from Section II-C that the ego vehicle maintains a
constant speed during the lane-change maneuver. In the worst
case scenario of potential collision, the leading vehicle makes
the maximum deceleration. The distance from the ego vehicle
to the leading vehicle is given by

de,l(t) = de,l(t1) +
(
sl(t1)− se(t1)

)
t− 1

2
amaxt

2. (12)

Therefore the first condition states that min0≤t< τ
2
de,l(t) ≥

Lx. Because the above distance function is concave, the
minimum occurs at two boundary points. Since de,l(0) ≥ Lx,
it follows that

de,l

(
τ

2

)
≥ Lx. (13)

Next, the distance from the ego vehicle to an adjacent
vehicle i is bounded by

de,i,−(t) ≤ de,i(t) ≤ de,i,+(t) (14)

de,i,−(t) = de,i(t1) +
(
si(t1)− se(t1)

)
t− 1

2
amaxt

2 (15)

de,i,+(t) = de,i(t1) +
(
si(t1)− se(t1)

)
t+

1

2
amaxt

2 (16)

As before, a positive distance means vehicle i is ahead of
the ego vehicle. The second condition states that in the entire
interval [t1 + τ

2 , t1 + τ) vehicle i is either ahead of the ego
vehicle,

de,i,−

(
τ

2

)
≥ Lx and de,i,− (τ) ≥ Lx, (17)

or behind the ego vehicle,

−de,i,+
(
τ

2

)
≥ Lx and − de,i,+ (τ) ≥ Lx (18)

Finally, at t2, se(t2) = se(t1). In the worst case of potential
collision, si(t2) = si(t1)± amaxτ , where the ± sign depends
on whether vehicle i is ahead of or behind the ego vehicle.
From (4), the third condition states that if vehicle i is ahead,
then

de,i,− (τ) ≥ max

0,
s2
e(t1)−

(
si(t1)− amaxτ

)2
2amax

+ Lx,

(19)
and vehicle i is behind, then

−de,i,+ (τ) ≥ max

0,
−s2

e(t1) +
(
si(t1) + amaxτ

)2
2amax

+Lx,

(20)

ICCAD 2020: International Conference on Connected Automated Driving

In summary, (12) to (20) specify the conditions of being
a safe state at t1. These conditions are derived to ensure
collision-free in the second stage lane-change maneuver in
[t1, t1 + τ). The next question, which is the focus of the
following three sections, is how to optimally reach a safe state
from the present state at t0, i.e., to minimize T , the duration
of the first stage longitudinal travel.

IV. MODEL-BASED OPTIMIZATION

A. Discrete-time Optimization Using Model-based Prediction

Section III-B shows that whether a safe state is reached
depends on the relative distance of the ego vehicle and the
surrounding ones and their speeds at t1, which depend on
their kinetic behaviors in [t0, t1). For simplicity, assume that in
this interval all the surrounding vehicles travel longitudinally
at constant speeds and that only the ego vehicle adjusts its
acceleration ae(t). Section IV-C will address the scenario
where the surrounding vehicles also adjust their accelerations.

In Section II-B, longitudinal travel is modeled as a
continuous-time operation where control variable a(t) is a
function of continuous time t. To simplify the optimization,
consider a discrete-time approximation where a(t) can only
change at discrete time instants t0, t0 + δ, t0 + 2δ, . . ., where
δ is the step size parameter. Suppose that T = Kδ, where
K ≥ 0 is integer. The objective of the optimization is to
minimize K by finding the optimal acceleration sequence
ae(0), ae(1), . . . , ae(K − 1), which are the accelerations of
the ego vehicle at t0, t0 + δ, . . . , t0 + (K− 1)δ, such that (12)
to (20) are satisfied at t1 = t0 + Kδ for the leading vehicle
and all the adjacent vehicles.

To check these conditions, one has to calculate the distance
between the ego vehicle and any surrounding one i, and their
speeds at t1, which are given as follows.

si(t0 +Kδ) = si(t0), (21)
se(t0 +Kδ) = se(t0) + u(K)δ, (22)

And de,i(t0 +Kδ) is given by

de,i(t0) +

K−1∑
j=0

si(t0 + jδ)− se(t0 + jδ)

 δ (23)

= de,i(t0) +
(
si(t0)− se(t0)

)
Kδ − w(K)δ2, (24)

where

u(K) =

K−1∑
j=0

ae(j), (25)

w(K) =

K−1∑
j=0

 j−1∑
j′=0

ae(j
′)

 . (26)

Clearly, only u(K), w(K) in (21) to (24) depend on the
acceleration sequence ae(k), k = 0, . . . ,K−1. Figure 7 shows
the flow chart of the model-based optimization.

The main complexity of the optimization lies in the con-
struction of the feasible set of all {u(K), w(K)} pairs. Cal-
culating se(t1), de,i(t1) and checking the safe state conditions

Fig. 7: Flow chart of model-based optimization.

Fig. 8: Graphic illustration of calculating u(K), w(K) along
two different paths.

are straightforward from (12) to (24). However, because ae(k)
can be any real number in [−amax, amax], the feasible set has
an infinite number of elements. Even if ae(k) is limited to a
finite number of discrete numbers, with a brute-force approach,
the size of the feasible set grows exponentially with K. To
address this complexity challenge, the paper next exploits the
structure in (25) and (26) and proposes an efficient algorithm
to construct the feasible set where the search complexity grows
quadratically with K.

B. An Efficient Search Algorithm for Optimizing Lane-change
Path Planning

For simplicity, first limit ae(k) to only three possible values
0,±amax. The general case of continuous ae(k) will be
addressed later in this section.

Figure 8 depicts two possible paths of ae(k) as k increases
from 0 to K. Because u(k) = u(k− 1) + ae(k− 1), u(k− 1)
either steps up or down by amax to arrive at u(k) or remains
unchanged depending on ae(k − 1). Here u(0) = 0. w(k) is

ICCAD 2020: International Conference on Connected Automated Driving

the net (positive or negative) area between the corresponding
path of u(0), . . . , u(K − 1) and the x-axis.

The possible values of u(K) is {−K,−(K −
1), . . . , 0, 1, . . . ,K}amax. For a given u(K), the value
of w(K) is not unique. As an example, in Figure 8, K = 6.
The two paths both lead to u(6) = 2amax. w(6) = 13amax

for the red path and w(6) = −3amax for the green path. The
following propositions characterize the feasible set of w(K)
for a given u(K).

Proposition 4.1: For a given u(K), the achievable w(K)
is bounded by wmin(K) ≤ w(K) ≤ wmax(K). wmin(K) is
achieved with

ae(0), . . . , ae(k1 − 1) = −amax,

ae(k1), . . . , ae(k1 + k2 − 1) = 0, (27)
ae(k1 + k2), . . . , ae(K1) = amax,

where

k1 =

K − u(K)
amax

2

 , k2 = K − u(K)

amax
− 2k1. (28)

wmax(K) is achieved with

ae(0), . . . , ae(k
′
1 − 1) = amax,

ae(k
′
1), . . . , ae(k

′
1 + k′2 − 1) = 0, (29)

ae(k
′
1 + k′2), . . . , ae(K1) = −amax,

where

k′1 =

K + u(K)
amax

2

 , k′2 = K +
u(K)

amax
− 2k′1. (30)

Proof Rewrite (26) as

w(K) =

K−1∑
j=0

(K − 1− j)ae(j). (31)

For a given u(K),
∑K−1
j=0 ae(j) is fixed. In (31), the coeffi-

cients of ae(0), . . . , ae(K − 1) are strictly decreasing. Thus,
given the fixed total, the values of ae(0), . . . , ae(K − 1)
should be made in descending order to maximize w(K) and
in ascending order to minimize w(K).

For wmin(K), the acceleration sequence
{ae(0), . . . , ae(K − 1)} should start with some −amax’s
followed by some 0’s and finally some amax’s, as in (27).
Moreover,
K−1∑
j=0

ae(j) = u(K)⇒ (K − k1 − k2)− k1 =
u(K)

amax
. (32)

Minimizing w(K) is equivalent to maximizing k1. Hence, (28)
follows.

Similarly, for wmax(K), the acceleration sequence
{ae(0), . . . , ae(K − 1)} starts with some amax’s followed by
some 0’s and finally some −amax’s, as in (29).
K−1∑
j=0

ae(j) = u(K)⇒ k′1 − (K − k′1 − k′2) =
u(K)

amax
. (33)

Fig. 9: Flow chart of adjusting the path of u(0), . . . , u(K−1)
to achieve target w(K) = w.

Maximizing w(K) is equivalent to maximizing k′1. Hence, (30)
follows. �

Proposition 4.2: For any w in discrete set
{wmin(K), wmin(K) + 1, . . . , wmax(K)}, one can always
find an acceleration sequence {ae(0), . . . , ae(K − 1)} such
that the resultant w(K) = w.

Proof Prove the proposition by construction. In Figure 8 the
net area between a path of u(0), . . . , u(K − 1) and the x-
axis is the sum of small positive or negative rectangular boxes
each of area ±amax. Starting from the path corresponding to
wmax(K), which is defined by the acceleration sequence given
in Proposition 4.1, sequentially reduce the number of negative
boxes and increase the number of positive boxes by adjusting
the path so that the sum reaches the target w.

A valid path has to meet the following two constraints.
1) The two ending points are fixed where u(0) = 0 and

u(K) is given.
2) In every step, the path can go up or down by one step

size amax, or remain unchanged.
Figure 9 describes a procedure of adjusting the path. Note that
the procedure and thus the path that achieves w(K) = w may
not be unique. Figure 10 depicts an example for the scenario
shown in Figure 8. �

Propositions 4.1 and 4.2 state that the feasible set in
Figure 7 is characterized as follows. u(K) takes every ele-
ment in {−K,−(K − 1), . . . , 0, 1, . . . ,K}amax. For a given
u(K), w(K) takes every element in {wmin(K), wmin(K) +
1, . . . , wmax(K)}. Because wmin(K), wmax(K) are in the
order of K, the complexity of examining all feasible pairs
of {u(K), w(K)} grows with K2.

One caveat is that if there is a leading vehicle, then the
optimal u(K), w(K) have to ensure that it is not hit by the
ego vehicle in [t0, t1). Recall that the safe state conditions
only impose the constraints at t1. Therefore, the flow chart of
Figure 7 requires to examine whether the found acceleration
sequence that satisfies u(K), w(K) do not cause any collision
at t0+δ, . . . , t0+Kδ assuming the leading vehicle drives at its
present speed. As noted in the proof of Proposition 4.2 multi-
ple acceleration sequences may achieve the same u(K), w(K).
In this case, examine the one that delays the acceleration

ICCAD 2020: International Conference on Connected Automated Driving

Fig. 10: An example of adjusting the path of u(0), . . . , u(K−
1) to achieve various targets w given u(K) = 2amax, starting
from the path corresponding to wmin(K) to the one corre-
sponding to wmax(K).

as much as possible, because it minimizes the possibility of
hitting the leading vehicle. This consideration motivates the
search procedure described in the flow chart of Figure 9.

In the calculation of wmin(K), wmax(K) so far, the con-
straints of maximum and minimum speeds smin, smax have
not been taken into account. To consider these constraints, the
feasible u(K) is limited to

smin − se(t0)

δ
≤ u(K) ≤ smax − se(t0)

δ
, (34)

and k1, k
′
1 obtained in (28) and (30) are limited to

k1 ≤
−smin + se(t0)

amaxδ
, k′1 ≤

smax − se(t0)

amaxδ
(35)

So far ae(k) has been limited to only three discrete values
0,±amax. Now let ae(k) to take continuous value. Thus,
u(K), w(K) are also continuous. Propositions 4.1 requires
modification. Take wmax(K) for example. Suppose that the
target u(K) is such that u−(K) < u(K) < u−(K) + amax,
where u−(K)

amax
is integer. By definition, 0 < u(K)− u−(K) <

amax. First obtain the optimal path with respect to u−(K)
according to Propositions 4.1, and then bump up a fraction of
the path by an amount equal to u(K) − u−(K) to increase
wmax.

Figure 11 shows two examples. The red solid line
represents the optimal path obtained with respect to
u−(K) according to Propositions 4.1. The black dash
line represents the modified one from the red path by
exploiting the difference u(K) − u−(K). From (30),
k′2 = 0, 1. Figure 11a is an example of k′2 = 0
where the acceleration sequence for u−(K) = 2amax

is {amax, amax, amax, amax,−amax,−amax}. The
modified acceleration sequence to achieve wmax(K) is

Fig. 11: An example of using continuous ae(k). Adjust the
path of u(0), . . . , u(K−1) for a target u(K) where u−(K) <

u(K) < u−(K) + amax and u−(K)
amax

is integer.

{amax, amax, amax, amax,−amax + u(K) − u−(K),−amax}.
Figure 11b is an example of k′2 = 1 where
the acceleration sequence for u−(K) = amax is
{amax, amax, amax, 0,−amax,−amax}. The modified
acceleration sequence to achieve wmax(K) is
{amax, amax, amax, u(K)− u−(K),−amax,−amax}.

The calculation of wmin can be modified similarly from
Propositions 4.1. Propositions 4.2 also requires modification:
any real number target w ∈ [wmin(k), wmax(k)] can be
achieved by an acceleration sequence.

C. Potential Problems

A major difficulty in path planning arises from the uncer-
tainty of the future behaviors of the surrounding vehicles.
Recall that Section III assumes the worst case scenario to
calculate the conditions of a safe state. The rationale is that
in the proposed two-stage path planning system, once in
the second stage lane-change maneuver, the ego vehicle is
migrating from the source to the target lane. The goal is to
ensure absolute safety in this process so that the ego vehicle
needs not to change its mind before it has safely arrived at the
target lane.

On the other hand, this section assumes the surrounding
vehicles travel at a constant speed in the planning of the first
stage longitudinal travel. Assuming the worst case scenario
here would be too conservative. Because in this stage the ego
vehicle is still traveling in the source lane, it can adapt its plan-
ning by comparing the observed and assumed behaviors of the
surrounding vehicles. Specifically, the optimization described
in this section is not a one-shot process but a moving-horizon
one. In the present time t0, the ego vehicle carries out the
two-stage path planning and obtains the optimal acceleration
sequence {ae(0), ae(1), . . .}. However, only ae(0) is applied
at t0. As time progresses to t0 + δ, the entire optimization
is carried out again with the updated information of si, de,i
of all the surrounding vehicles i and the time horizon of the
optimization advances by δ. Any error in the assumption of the
surrounding vehicles is mitigated, as a new ae(0) is obtained
and applied at time t0 + δ instead of ae(1) that is calculated
in the previous optimization done at t0 and meant to represent
the planned acceleration at t0 + δ.

While moving-horizon optimization ensures that the ego
vehicle does not use obsolete information and results in any

ICCAD 2020: International Conference on Connected Automated Driving

Fig. 12: Agent-environment interaction in RL.

safety issues, the path planning results may be severely sub-
optimal. For example, consider an adjacent vehicle i in the
target lane next to the ego one, i.e., de,i = 0. Suppose that
the optimization result is that the ego vehicle is to accelerate
to surpass i and move to the target lane ahead of i. If vehicle
i happens to decelerate, then the ego vehicle would find it
easier than expected to surpass i. However, if vehicle i is also
accelerating, then the ego vehicle may not be able to lead i
by a safe distance for a long time. The optimal strategy with
genie information about the behavior of vehicle i would be to
decelerate and move to the target lane behind i.

This example clearly shows that the performance of the
model-based optimization relies heavily on the accuracy of
the model assumptions. The next section employs a model-
free approach using deep reinforcement learning to overcome
this problem.

V. DEEP REINFORCEMENT LEARNING

A. Brief Introduction of Deep Reinforcement Learning

Reinforcement learning (RL) is a machine learning ap-
proach for sequential decision making problems. Figure 12
depicts the basic diagram of RL. Denote Sk the state of the
environment at discrete time instant k. Denote Φ the state
space where Sk ∈ Φ. For simplicity, assume that Sk can be
observed by a RL agent. The RL agent takes an action Ak in
the action space Ψ according to a policy π,

Ak = π(Sk). (36)

Action Ak drives the environment to a new state Sk+1 in
the next time instant. The environment can be modeled by
a state transition probability PSk,S(Ak), the probability that
Sk+1 = S ∈ Φ given the present state Sk and action Ak.
PSk,S(Ak) represents the system model. As will be clear later,
in a model-free algorithm the agent does not know PSk,S(Ak).

The agent obtains a reward Rk as a function of {Ak, Sk}.
The total discounted reward over time under policy π is

V π(Sk) = Rk + γRk+1 + γ2Rk+2 + · · · , (37)

where γ ∈ (0, 1) is a discount factor.
The goal of RL is to find the optimal policy π∗ that

maximizes V π(Sk). This is more challenging than supervised
learning used commonly in deep learning, where a set of
training samples {Sk → Ak} have been given and the job of
supervised learning is to use a neural network to memorize
the training set and generalize to test data. In RL, such
directed training samples are not available - for a given Sk,
the “correct” answer Ak is not provided. The agent has to

gradually figure out the optimal policy by interacting with the
environment. In a sense, RL is to learn from experience rather
than from a well defined training dataset.

A number of RL algorithms have been studied in the litera-
ture [8]. The paper next focuses on the model-free Q-Learning
algorithm [9], [10]. The Q-Learning algorithm employs a so-
called Q-function

Qπ(Sk, Ak) = Rk(Sk, Ak) + γ
∑
S∈Φ

PSk,S(Ak)V π(S). (38)

Qπ(Sk, Ak) represents the total reward obtained by selecting
Ak at time instant k and then following policy π in subsequent
time instants k+ 1, k+ 2, If function Qπ(S,A) is known,
then the optimal policy is obtained by optimizing Qπ(Sk, A)
over the action space Ψ,

A∗k = π∗(Sk) = arg max
A∈Ψ

Qπ(Sk, A). (39)

For the optimal policy π∗, the actions at k and k+1, k+2, . . .
are by definition all optimal. Therefore, for any S ∈ Φ, the
total discounted reward under π∗ is obtained by optimizing
Qπ(S,A) over the action space Ψ,

V π
∗
(S) = max

A∈Ψ
Qπ
∗
(S,A). (40)

Therefore the recursive Bellman’s optimality equation follows
from (38) and (40)

Qπ
∗
(Sk, Ak) = Rk(Sk, Ak)

+γ
∑
S∈Φ

(
PSk,S(Ak)

(
max
A∈Ψ

Qπ
∗
(S,A)

))
. (41)

(41) still relies on PSk,S(Ak). To avoid the use of the model,
the Q-Learning algorithm makes the following approximation,∑
S∈Φ

(
PSk,S(Ak)

(
max
A∈Ψ

Qπ
∗
(S,A)

))
≈ max

A∈Ψ
Qπ
∗
(Sk+1, A),

(42)
where Sk+1 is an instance of the state resulting from action
Ak. Recall from the system model that given Sk, Ak, the state
S at k+1 is a random variable whose distribution is given by
PSk,S(Ak). (42) in effect ignores the probability distribution
and focuses on one instance. When the learning is iterated over
many time instants, many randomly generated instances will
mimic the distribution due to the averaging effect therefore
justifying the above approximation (42).

Convert (41) into a learning rule to update Qπ
∗
(Sk, Ak)

with (42),

Qπ
∗
(Sk, Ak)⇐ Qπ

∗
(Sk, Ak) + β∆Qπ∗ (Sk,Ak), (43)

∆Qπ∗ (Sk,Ak) = Rk(Sk, Ak)

+γmax
A∈Ψ

Qπ
∗
(Sk+1, A)−Qπ

∗
(Sk, Ak), (44)

where ⇐ in (43) means that the left side is updated by the
right side. (43) and (44) are the key steps of the model-free
Q-Learning algorithm.

One idea of deep RL called Deep Q-Learning (DQL) [11],
[12] is to represent Qπ

∗
(S,A) with a deep neural network

ICCAD 2020: International Conference on Connected Automated Driving

Fig. 13: Flow chart of DQL training.

Qπ
∗
(S,A,µ), where vector µ contains the weights of the

neural network, and use the RL learning rule to train the neural
network weights µ. At time k, the loss function is a function
of current weights µk,

LDQL(µk) =
(

∆Qπ∗ (Sk,Ak,µk)

)2

, (45)

∆Qπ∗ (Sk,Ak,µk) = Rk(Sk, Ak)

+γmax
A∈Ψ

Qπ
∗
(Sk+1, A,µk)−Qπ

∗
(Sk, Ak,µk). (46)

Following (43), the updating rule of the weights is

µk+1 = µk + β
(

∆Qπ∗ (Sk,Ak,µk)

)
·
(
∇µQ

π∗(Sk, Ak,µk)
)
,

(47)
where β is the learning rate and ∇µkQ

π∗(Sk, Ak,µk) is the
gradient of the output of the neural network with respect to
weights µ. Figure 13 describes the DQL training. Once the
training has converged, (39) generates the DQL policy.

B. Deep Q-Learning Algorithm of Lane-change Path Planning

To apply the DQL algorithm to the lane-change path plan-
ning problem, first define the state of the environment Sk to
be a vector of the ego vehicle’s speed and the surrounding
vehicles’ speeds and distances at the moment,

Sk =
{
se(k),

(
sl(k), de,l(t)

)
,
(
si(k), de,i(t)

)
, i = 1, 2, . . .

}
.

(48)
Note that the state space Φ is continuous.

The action in the DQL algorithm is a scalar, Ak = ae(k).
For simplicity, the action space Ψ is assumed to be discrete
where Ak = {−amax, 0, amax}. The only constraint is that
the ego vehicle has to maintain a safe distance (4) from the
leading vehicle at all time, which means that Ak may not take
amax or even 0 in some states.

The DQL algorithm itself is unaware of the state transition
probability, which characterizes how the environment evolves,
which is needed to run the simulation. For simplicity, the paper
makes the following assumption for the simulation: except
for the ego one, all vehicles intend to stay in their current
lanes and their longitudinal driving behavior is specified with a
well-developed car-following model, Intelligent Driver Model
(IDM) [13]. In the IDM, the acceleration of a vehicle ṡ is the
following continuous function of its own speed s, the distance

Fig. 14: An example of driving trajectories in IDM. The left
figure shows the positions of the vehicles and the right figure
shows the speeds.

gap from its leading vehicle d, and the speed difference
(approaching rate) between the two vehicles ∆s,

ṡ = η1

1−
(
s

η2

)η3
−

(
η4 + η5s+ s∆s

η6

d

)2
 , (49)

where η1, . . . , η6 are model parameters and the recommended
values are given in [13].

The IDM is not a stochastic mode but a deterministic one in
the sense that except for se(k), Sk+1 is completely determined
by Sk. Recall that se(k) is a function of Ak−1 = ae(k−1). In
the DQL training, when Ak−1 is applied to the environment,
it affects se(k), which then affects other elements of state S
according to (49).

To get an sense of how the IDM works, consider a single-
lane loop of length 500 meters. Five vehicles are placed in the
loop with random initial positions and speeds. In simulation
they all move in the clockwise direction and use the IDM
to control their respective accelerations. Figure 14 shows the
result of one simulation where their positions and speeds vary
as the simulation progresses for 100 seconds. In this example,
their initial speeds are very different with each other, two
vehicles are in very close positions and the other three are
close with one another. After a transient period, their speeds
converge to some common number and their positions are
spread out roughly uniformly in the loop.

In the DQL training, the ego vehicle may trigger the desire
of lane-change at anytime during the simulation, in a transient
or steady state period. Once triggered, the ego vehicle follows
the DQL algorithm while all other ones continue following
the IDM.

Unlike the model proposed in this study, the IDM does not
have an explicit notion of a safe distance, because deceleration
can be made arbitrarily large to avoid hitting the leading
vehicle. The deceleration in the transient period in Figure 14
is quite large and may not be realistic in practice.

The goal of plan planning is to reach a safe state in as
few steps as possible. Thus, the study proposes the following
reward function,

Rk(Sk, Ak) =

{
10, if a safe state is reached,
−1, otherwise.

(50)

ICCAD 2020: International Conference on Connected Automated Driving

The idea is that if a safe state has been reached, a positive
reward is given to the current policy; otherwise, a step is
considered wasted and the current policy is penalized by a
negative reward. In Figure 13 a trial ends if a safe state is
reached or a maximum number of simulation steps has passed.

Because Qπ
∗
(S,A,µ) is a general function whose charac-

teristics are not known before, consider a fully connected (FC)
deep neural network that has been shown great capability of
general function approximation. An FC network represents a
general purpose connection pattern and makes no assumptions
about the features in the function to be approximated. The
drawback is that it is very expensive in terms of memory and
computation.

Every neuron in a layer is connected to every neuron
in the previous layer, and each connection has its own
weight. The output of a neuron o with M inputs is o =

f
(∑M

m=1 µmim + µ0

)
, where i1, . . . , iM are the M inputs,

µ0, . . . , µM are the bias and weights, and f is the activation
function. The input layer consists of input neurons representing
Sk, Ak. Observe that to improve the convergence of training, it
is important to normalize the inputs of the input layer neurons
to the interval of (0, 1) before feeding them to the network.
There is only one output layer representing the scalar value of
Q-function. Multiple hidden layers are between the input and
output layers. In this study, the activation function is f(x) = x
in the input and output layers and is the logistic sigmoid
f(x) = 1

1+exp(−x) in the hidden layers. ∇µkQ
π∗(Sk, Ak,µk)

in (47) can be obtained by the gradient back-propagation from
the output to all the other layers.

An important step in the DQL training of Figure 13 is
for the ego vehicle to choose an action Ak. There are two
seemingly conflicting goals, namely exploration and exploita-
tion. Exploitation is to probe a limited, but promising, region
of the search space in the neighborhood of a promising
solution that is known so far. Exploration is to probe a much
larger portion of the search space to discover new promising
solutions. To balance the trade-off between the two, choose an
action according to the popular Boltzmann distribution. Denote
ψn, n = 1, 2, . . . the elements in action space Ψ. Choose one
of {ψn} for Ak according to probability

pn =
exp

(
Qπ
∗
(Sk, ψn,µk)/Λ

)
∑
j exp

(
Qπ∗(Sk, ψj ,µk)/Λ

) , (51)

where Λ is a positive real parameter (temperature) that controls
the stochastic selection. A smaller Λ tends to prefer exploita-
tion over exploration. In the DQL training, the value of Λ
gradually drops to close to 0 as the simulation progresses.

Similarly, the learning rate β also decreases towards 0 as
learning progresses to improve stability and help convergence.

C. Potential problems

One limitation of the above proposed DQL algorithm is
that only a number of discrete actions are allowed, while in
practice the ego vehicle can take a continuous number for

its acceleration. There are deep RL algorithms that address
continuous action spaces [12], which will not be explored here.

Convergence is a major practical concern. Although the
convergence of the Q-Learning algorithm has been proven
under certain conditions [10], the curse of dimensionality may
result in excessive learning time and even not being able to
converge to a stable policy in some cases. As pointed out
before, RL and in particular deep RL are in general harder than
supervised learning. Not surprisingly, compared with many
neural network algorithms dealing with problems such as
image classification, the DQL algorithm finds it more difficult
to converge.

Generalization is yet another concern. The DQL learning
uses the interaction with an environment where surrounding
vehicles follow the IDM. The DQL algorithm itself does not
depend on the IDM and can be used to learn other driving
models. However, the risk always exists where some drivers
behave differently from the trained models, thereby resulting
in sub-optimality.

To address the above potential problems, the paper will
study the use of 5G V2V to assist lane-change path planning.

VI. 5G V2V COOPERATION

The schemes studied so far have assumed that the ego
vehicle uses either model assumptions or prior training to
guess the future behaviors of surrounding vehicles, and makes
its lane-change path planning decision without any real-time
exchange with them. Explicit communication with surrounding
vehicles through 5G V2V to understand or influence their
future behaviors can reduce uncertainty in the planning and
therefore enhance the performance.

V2V communications is a form of radio-frequency (RF)
communications similar to Wi-Fi or mobile cellular and allows
vehicles to exchange information about their presence and
driving intention. Two V2V technologies are competing in
the market, namely Dedicated Short Range Communications
(DSRC) based on Wi-Fi and Cellular-V2V (C-V2V) based
on 4G LTE [14]. Both technologies broadcast basic safety
messages of position and speed information. Recently, 5G
V2V aims to drastically enhance C-V2V by supporting a
variety of traffic types and adding new features such as
enhanced mobile broadband, high reliability and low latency
[15].

5G V2V can help lane-change path planning in the follow-
ing two ways.

1) Trajectory sharing. Vehicle i informs the ego vehicle its
planned future speeds si(t0 + jδ), j = 0, . . . ,K − 1
via 5G V2V. As a result, the optimization scheme in
Section IV does not have to assume all the surrounding
vehicles travel at constant speeds. (23) still holds and
(24) is revised to

de,i(t0 +Kδ) = de,i(t0) +

K−1∑
j=0

si(t0 + jδ)

 δ

−se(t0)Kδ − w(K)δ2. (52)

ICCAD 2020: International Conference on Connected Automated Driving

The summation term is known because of 5G V2V.
The optimization procedure of u(K), w(K) remains the
same. This is a form of passive cooperation, because
vehicle i does not alter its planned future behavior.

2) Cooperative path planning. As a form of active cooper-
ation, the ego and surrounding vehicles can jointly op-
timize their path planning. As an example, surrounding
vehicles are all willing to adjust their speeds to further
help the ego vehicle. (21) and (24) becomes

si(t0 +Kδ) = si(t0) + ui(K)δ, (53)
de,i(t0 +Kδ) = de,i(t0) +

(
si(t0)− se(t0)

)
Kδ

+
(
wi(K)− w(K)

)
δ2, (54)

where

ui(K) =

K−1∑
j=0

ai(j), (55)

wi(K) =
K−1∑
j=0

 j−1∑
j′=0

ai(j
′)

 . (56)

In addition to u(K) and w(K), ui(K), wi(K) are
variables for optimization. Clearly the complexity grows
quickly as more surrounding vehicles participate in the
joint optimization. In practice, only vehicles close to the
ego vehicle will participate.

VII. SIMULATION RESULTS AND DISCUSSION

This section reports the numerical study of the three
schemes presented in Sections IV to VI. The results are
obtained via simulations.

The unit of all distances and positions is meter. The unit of
time is second. The unit of all speeds is kilometer per hour.
The unit of acceleration is meter squared per second. The
following parameters are used in all the simulations: Lx =
5, smin = 60, smax = 120, τ = 1, amax = 2, δ = 0.1. The ego
acceleration ae(k) takes three possible values 0,±amax.

Consider the scenario of three vehicles: the ego vehicle,
a leading one in the same lane and an adjacent one in
the target lane. Their positions and speeds at t0 = 0 are
given in Figure 15a. The model-based optimization scheme
is employed in the moving-horizon manner, as described in
Section IV-C, to determine the ego vehicle’s acceleration.
The acceleration of the leading and adjacent vehicles is 0.
Figure 15b, c and d plot the acceleration and the positions of
the three vehicles as the simulation progresses for three cases
of pl, sa. In Figure 15b, pl = 100, sa = 110. The optimal
solution is to decelerate: ae(k) = −amax for k = 0, 1, . . . , 15
so that at t = 16δ the ego vehicle is behind the adjacent vehicle
and sufficiently slow to be at a safe state. In Figure 15c, the
adjacent vehicle is slower: pl = 100, sa = 100. The optimal
solution is completely opposite: to accelerate ae(k) = amax

for k = 0, 1, . . . , 23 to be sufficiently ahead of the adjacent
vehicle and sufficiently fast at t = 24δ. Finally in Figure 15d,
the leading vehicle is closer: pl = 30, sa = 100. The presence
of the nearby leading vehicle prevents the ego one from

(a) Scenario illustration (b) pl = 100, sa = 110

(a) pl = 100, sa = 100 (b) pl = 30, sa = 100

Fig. 15: Trajectories of vehicle positions in three cases.

(a) pa = −10 (b) pa = −20

Fig. 16: Deceleration versus acceleration decision boundary.

accelerating as far as in Figure 15c. The optimal solution
is again completely opposite: to decelerate ae(k) = −amax

for k = 0, 1, . . . , 24 to be behind the adjacent vehicle and
sufficiently slow at t = 25δ.

Figure 15 seems to indicate2 that the ego vehicle either
accelerate or decelerate depending on pl, sa, pa. Figure 16
depicts the acceleration versus deceleration decision map in
two cases of pa = −10,−20, where a red “<” indicates the
decision is deceleration at given pl, sa and a blue “>” indicates
acceleration. For given pa, pl, as sa increases, the decision
switches from acceleration to deceleration at some tipping
point3. These tipping points form a decision boundary that
clearly separates the areas of deceleration and acceleration.
For a given pa, the decision boundary can be approximately
represented by a line of a positive slope between sa and
pl. When |pa| increases from Figure 16a to Figure 16b,

2It should be pointed out that the optimal sequence ae(k) is not always
either amax or −amax. For example, for pa = −10, pl = 26, sa = 90,
ae(k) is {−2,−2,−2, 0, 2, . . . , 2︸ ︷︷ ︸

11

}; for pa = −10, pl = 30, sa = 91,

ae(k) = {2, . . . , 2︸ ︷︷ ︸
7

, 0, 0, 0, 2, 0, 2}. For simplicity, both are labeled as

acceleration in Figure 16 because the majority of the actions is acceleration.
3In Figure 16a for pa = −10, sa = 101, the decision is always

deceleration irrespective of pl.

ICCAD 2020: International Conference on Connected Automated Driving

(a) 1 adjacent vehicle (b) 2 adjacent vehicles

Fig. 17: Normalized Histograms of lane-change latency with
the model-based optimization. The height of a bar is the
probability of the corresponding bin.

(a) Increase in latency (b) Decrease in latency

Fig. 18: Normalized Histograms of increase and decrease
in lane-change latency due to variable speeds of adjacent
vehicles.

the boundary line shifts to the left, meaning that for the
same pl, sa, the decision tends to prefer acceleration over
deceleration as the adjacent is farther behind.

The goal of path planning is to minimize the lane-change
latency subject to the safety constraints. To study the statis-
tical performance, uniformly randomly drop the surrounding
vehicles, for 1000 times, in the following intervals: pl(t0) ∈
(Lx, 20), pa(t0) ∈ (−10, 10), se(t0) = sl(t0) ∈ (smin, smax).
sa(t0) is randomly within ±10% of se(t0). Figure 17 plots the
normalized histograms of the lane-change latency using the
model-based optimization4. In Figure 17a, only one adjacent
vehicle is dropped in the target lane. About half of the time, the
ego vehicle can move to a safe state quickly within 2 second
latency; however, the latency can be as large as 4 seconds or
more in some cases. In Figure 17b two adjacent vehicles are
dropped, which increases the congestion level and results in
larger latency.

Section IV-C points out that the model-based optimization
assumes surrounding vehicles travel at constant speeds and
that its performance would be negatively or positively affected
if this assumption does not hold. Figure 18 quantifies this
effect statistically by plotting the normalized histograms of
the increase and decrease in lane-change latency of variable

4In the simulation, the maximum search window is set to K = 100. In
some cases, the optimization algorithm cannot find any feasible sequence
ae(k) to reach a safe state within K ≤ 100. These instants are labeled as
lane-change latency 10 seconds in Figure 17. This is the reason that the bar
corresponding to 10 exhibits a spike.

(a) Normalized histogram (b) Scatter plot

Fig. 19: Statistics of reduction in lane-change latency due to
5G V2V.

(a) (b)

Fig. 20: Comparison of lane-change latency when adjacent
vehicles follow the IDM. No leading vehicles are present.
(a) Mode-based optimization and (b) Deep reinforcement
learning.

speeds of adjacent vehicles as compared with that of constant
speeds. The simulation is the same as in Figure 17a except
that adjacent vehicles can accelerate or decelerate at ±amax

subject to the smin, smax constraints. Among the 1000 random
samples, about 100 see no difference in lane-change latency
and are thus excluded in the histogram of Figure 18. It is
interesting to note that the distributions of the increase and
decrease in latency are quite different. The increase in latency
is more spread out in Figure 18a, while the distribution of the
decrease is more concentrated in smaller values in Figure 18b,
indicating that the negative impact due to variable speeds can
be more profound than the positive one.

Figure 19 provides the statistics of the reduction in lane-
change latency when 5G V2V is employed to better predict
the future behaviors of adjacent vehicles. The results show
that the improvement is insignificant in many sample points
whose latency values are not large to start with. However,
in other sample points with large latency values without 5G
V2V, the improvement can be substantial. This means that the
value of 5G V2V lies in helping the tail, i.e., the worst case,
performance where help is most needed.

Finally, consider a different scenario where adjacent vehi-
cles follow the IDM instead of simply accelerating (amax)
or decelerating (−amax). Specifically, first simulate the IDM
as in Figure 14 to get a sample set of 5 · 104 vehicle speed
traces. For example, there are 5 speed traces in Figure 14b.
Partition the sample set into a training set (80%) and a test
set (20%). For simplicity, consider one adjacent vehicle and

ICCAD 2020: International Conference on Connected Automated Driving

no leading vehicle. The adjacent vehicle randomly picks one
speed trace from the training set as its driving speed and
pa(t0) ∈ (−10, 10) as its initial position. The deep reinforce-
ment learning DQN employs a network of two hidden layers,
each of 30 nodes, and is trained with the training set. The DQN
parameters are as follows. γ = 0.8. The number of training
iterations is 106. The batch size of training is 100. The learning
rate β = max(0.15 − 0.0001k, 0.05) and the temperature
Λ = 1.1−k where k = 1, 2, . . . is simulation step index. The
trained DQN is then used to determine ae when the adjacent
vehicle picks its driving speed from the test set. Figure 20b
shows the normalized histogram of lane-change latency for the
test set. As a comparison, Figure 20a shows the performance
of the model-based optimization, which assumes (incorrectly)
a constant speed of the adjacent vehicle in the prediction
algorithm and does not enjoy the benefits of prior training.
The DQN algorithm exhibits clear advantage in handling the
scenario where the adjacent vehicle varies the speed.

VIII. CONCLUSION

This paper has studied lane-change path planning, a crucial
and yet complex task in autonomous driving. The paper
proposes that the entire path planning consists of two stages to
address the requirements of both safety and efficiency. In the
first stage the ego vehicle controls only the linear acceleration
to reach a safe state. In the second stage the ego vehicle makes
lateral maneuver by controlling the angular acceleration. The
safe state conditions are derived based on a fixed pattern
of lateral maneuver to ensure collision free in the second
stage. Therefore, the lane-change path planning problem is
converted to an optimization problem of minimizing the time
to reach a safe state in the first stage. The paper proposes
three schemes to determine the acceleration sequence, namely,
kinetic model based optimization, deep reinforcement learn-
ing, and 5G vehicle-to-vehicle (V2V). The paper investigates
these schemes via simulation. The model-based optimization
is sensitive to the model assumptions. The deep reinforcement
learning performs better than the model-based optimization
when the actual driving behavior deviates from the model
assumptions. The 5G V2V further enhances the robustness
by eliminating uncertainty in predicting driving behavior be-
haviors by explicit communications among vehicles to share
driving intents and enable cooperative driving.

Several areas can be considered for the future work.
• So far the safe state analysis only considers the leading

vehicle in the source lane and the adjacent vehicles in
the target lane. The vehicles in the lane left of the target
lane should also be included in the analysis, because they
may make lane-change maneuver to the target lane while
the ego vehicle is making maneuver.

• While the deep reinforcement learning DQN algorithm
and 5G V2V algorithm show advantages over the model-
based optimization, the robustness should be thoroughly
investigated. For the DQN algorithm, both the training
and test sets come from the same IDM in my simulation.
It would be interesting to see how the DQN algorithm

performs when the test set is generated from a different
driving model. For the 5G V2V algorithm, this paper
assumes information sharing is perfect among surround-
ing vehicles. One should simulate the scenario where a
fraction of V2V messages are lost.

• This paper focuses on one autonomous vehicle and as-
sumes all other vehicles follow traditional driving models.
It would be interesting to see how multiple autonomous
vehicles interact among each other. The cooperative path
planning briefly discussed in Section VI is one example.
In practice a likely scenario is that autonomous vehicles
will be mixed with non-autonomous ones and different
autonomous vehicles may run different lane-change path
planning algorithms. The analysis of such a mixed sce-
nario is definitely more complex but will provide valuable
insights in the real world.

REFERENCES

[1] A. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep reinforcement
learning framework for autonomous driving,” Electronic Imaging, vol.
2017, pp. 70–76, 01 2017.

[2] S. Hetrick, “Examination of driver lane change behavior and the poten-
tial effectiveness of warning onset rules for lane change or “side” crash
avoidance systems,” Ph.D. dissertation, Virginia Tech, 1997.

[3] K. I. Ahmed, “Modeling drivers’ acceleration and lane changing behav-
ior,” Ph.D. dissertation, Massachusetts Institute of Technology, 1999.

[4] C. Vallon, Z. Ercan, A. Carvalho, and F. Borrelli, “A machine learning
approach for personalized autonomous lane change initiation and con-
trol,” in 2017 IEEE Intelligent Vehicles Symposium (IV), 06 2017, pp.
1590–1595.

[5] Y. Chen, “Learning-based lane following and changing behaviors for
autonomous vehicle,” Master’s thesis, Carnegie Mellon University, Pitts-
burgh, PA, May 2018.

[6] C.-J. Hoel, K. Wolff, and L. Laine, “Automated speed and lane change
decision making using deep reinforcement learning,” 11 2018, pp. 2148–
2155.

[7] P. Wang, C.-Y. CHAN, and A. De La Fortelle, “A Reinforcement
Learning Based Approach for Automated Lane Change Maneuvers,”
in IEEE Intelligent Vehicles Symposium. Chang Shu, China: IEEE,
06 2018. [Online]. Available: https://hal-mines-paristech.archives-
ouvertes.fr/hal-01980542

[8] S. Sathiya Keerthi and B. Ravindran, “A tutorial survey of reinforcement
learning,” Sadhana, vol. 19, no. 6, pp. 851–889, 12 1994. [Online].
Available: https://doi.org/10.1007/BF02743935

[9] C. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, Cam-
bridge University, 01 1989.

[10] C. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3, pp. 279–292, 05 1992. [Online]. Available:
https://doi.org/10.1007/BF00992698

[11] M. Riedmiller, “Neural fitted Q iteration – first experiences with a data
efficient neural reinforcement learning method,” in Machine Learning:
ECML 2005, J. Gama, R. Camacho, P. B. Brazdil, A. M. Jorge, and
L. Torgo, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 317–328.

[12] V. Franois-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and
J. Pineau, “An introduction to deep reinforcement learning,” Foundations
and Trends in Machine Learning, vol. 11, no. 3-4, pp. 219–354, 2018.
[Online]. Available: http://dx.doi.org/10.1561/2200000071

[13] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in
empirical observations and microscopic simulations,” Physical Review
E, vol. 62, pp. 1805–1824, 02 2000.

[14] T. Bey and G. Tewolde, “Evaluation of dsrc and lte for v2x,” in
2019 IEEE 9th Annual Computing and Communication Workshop and
Conference (CCWC), 01 2019, pp. 1032–1035.

[15] S. Chen, J. Hu, Y. Shi, Y. Peng, J. Fang, R. Zhao, and L. Zhao, “Vehicle-
to-everything (v2x) services supported by lte-based systems and 5g,”
IEEE Communications Standards Magazine, vol. 1, no. 2, pp. 70–76,
2017.

